Skip to main content
Version: 0.77.4

Plan

The Plan object is an object representing the steps that Kurtosis will take inside the enclave during the Execution phase.

Kurtosis injects a Plan object into the run function in the main.star of your Starlark script. Kurtosis relies on the first argument of your run function being named plan (lowercase); all your Starlark scripts must follow this convention.

To use the Plan object in inner functions, simply pass the variable down.

Note that the function calls listed here merely add a step to the plan. They do not run the actual execution. Per Kurtosis' multi-phase run design, this will only happen during the Execution phase. Therefore, all plan functions will return future references.

add_service

The add_service instruction adds a service to the Kurtosis enclave within which the script executes, and returns a Service object containing information about the newly-added service.

# Returns a Service object (see the Service page in the sidebar)
service = plan.add_service(
# The service name of the service being created.
# The service name is a reference to the service, which can be used in the future to refer to the service.
# Service names of active services are unique per enclave.
# MANDATORY
name = "example-datastore-server-1",

# The configuration for this service, as specified via a ServiceConfig object (see the ServiceConfig page in the sidebar)
# MANDATORY
config = service_config,
)

For detailed information about the parameters the config argument accepts, see ServiceConfig.

For detailed information about what add_service returns, see Service.

Example:

dependency = plan.add_service(
name = "dependency",
config = ServiceConfig(
image = "dependency",
ports = {
"http": PortSpec(number = 80),
},
),
)

dependency_http_port = dependency.ports["http"]

plan.add_service(
name = "dependant",
config = ServiceConfig(
env_vars = {
"DEPENDENCY_URL": "http://{}:{}".format(dependency.ip_address, dependency_http_port.number),
},
),
)

add_services

The add_services instruction behaves like add_service, but adds the services in parallel.

The default parallelism is 4, but this can be increased using the --parallelism flag of the run CLI command.

add_services takes a dictionary of service names -> ServiceConfig objects as input, and returns a dictionary of service names -> Service objects.

all_services = plan.add_services(
# A map of service_name -> ServiceConfig for all services that needs to be added.
# See the 'ServiceConfig' page in the sidebar for more information on this type.
# MANDATORY
configs = {
"example-datastore-server-1": datastore_server_config_1,
"example-datastore-server-2": datastore_server_config_2,
},
)

For detailed information about the ServiceConfig object, see here.

For detailed information about the Service objects that add_services, see Service.

caution

add_services will succeed if and only if all services are successfully added. If any one fails (perhaps due to timeouts a ready condition failing), the entire batch of services will be rolled back and the instruction will return an execution error.

assert

The assert instruction throws an Execution phase error if the defined assertion fails.

plan.assert(
# The value currently being asserted.
# MANDATORY
value = "test1",

# The assertion is the comparison operation between value and target_value.
# Valid values are "==", "!=", ">=", "<=", ">", "<" or "IN" and "NOT_IN" (if target_value is list).
# MANDATORY
assertion = "==",

# The target value that value will be compared against.
# MANDATORY
target_value = "test2",
) # This fails in runtime given that "test1" == "test2" is false

plan.assert(
# Value can also be a runtime value derived from a `get_value` call
value = response["body"],
assertion = "==",
target_value = 200,
)
caution

Asserts are typed, so running

plan.assert(
value = "0",
assertion = "==",
target_value = 0,
)

Will fail. If needed, you can use the extract feature to parse the types of your outputs.

exec

The exec instruction executes a command on a container as if they were running in a shell on the container.

exec_recipe = ExecRecipe(
# The actual command to execute.
# Each item corresponds to one shell argument, so ["echo", "Hello world"] behaves as if you ran "echo" "Hello world" in the shell.
# MANDATORY
command = ["echo", "Hello, world"],
)

result = plan.exec(
# A Service name designating a service that already exists inside the enclave
# If it does not, a validation error will be thrown
# MANDATORY
service_name = "my-service",

# The recipe that will determine the exec to be performed.
# Valid values are of the following types: (ExecRecipe)
# MANDATORY
recipe = exec_recipe,

# If the recipe returns a code that does not belong on this list, this instruction will fail.
# OPTIONAL (Defaults to [0])
acceptable_codes = [0, 0], # Here both 0 and 1 are valid codes that we want to accept and not fail the instruction

# If False, instruction will never fail based on code (acceptable_codes will be ignored).
# You can chain this call with assert to check codes after request is done.
# OPTIONAL (Defaults to False)
skip_code_check = False,
)

plan.print(result["output"])
plan.print(result["code"])

The instruction returns a dict whose values are future reference to the output and exit code of the command. result["output"] is a future reference to the output of the command, and result["code"] is a future reference to the exit code.

They can be chained to assert and wait:

exec_recipe = ExecRecipe(
command = ["echo", "Hello, world"],
)

result = plan.exec(service_name="my_service", recipe=exec_recipe)
plan.assert(result["code"], "==", 0)

plan.wait(service_name="my_service", recipe=exec_recipe, field="output", assertion="!=", target_value="Greetings, world")

print

The print instruction will print a value during the Execution phase. When the print instruction is executed during the Execution Phase, future references will be replaced with their execution-time values.

plan.print("Any string here")

remove_connection

As opposed to set_connection, remove_connection removes a connection override between two subnetworks. The default connection cannot be removed; it can only be updated using set_connection.

remove_connection(
# The subnetwork connection that will be removed
# If any of those two subnetworks does not currently have services, this instruction will not do anything.
# MANDATORY
subnetworks = ("subnetwork_1", "subnetwork_2"),

)

remove_service

The remove_service instruction removes a service from the enclave in which the instruction executes in.

plan.remove_service(
# The service name of the service to be removed.
# MANDATORY
name = "my_service",
)

render_templates

The render_templates instruction combines a template and data to produce a files artifact. Files artifacts can be used with the files property of the ServiceConfig object, allowing for reuse of config files across services.

# Example data to slot into the template
template_data = {
"Name" : "Stranger",
"Answer": 6,
"Numbers": [1, 2, 3],
"UnixTimeStamp": 1257894000,
"LargeFloat": 1231231243.43,
"Alive": True,
}

artifact_name = plan.render_templates(
# A dictionary where:
# - Each key is a filepath that will be produced inside the output files artifact
# - Each value is the template + data required to produce the filepath
# Multiple filepaths can be specified to produce a files artifact with multiple files inside.
# MANDATORY
config = {
"/foo/bar/output.txt": struct(
# The template to render, which should be formatted in Go template format:
# https://pkg.go.dev/text/template#pkg-overview
# MANDATORY
template="Hello {{.Name}}. The sum of {{.Numbers}} is {{.Answer}}. My favorite moment in history {{.UnixTimeStamp}}. My favorite number {{.LargeFloat}}. Am I Alive? {{.Alive}}",

# The data to slot into the template, can be a struct or a dict
# The keys should exactly match the keys in the template.
# MANDATORY
data=template_data,
),
},

# The name to give the files artifact that will be produced.
# If not specified, it will be auto-generated.
# OPTIONAL
name = "my-artifact",
)

The return value is a future reference to the name of the files artifact that was generated, which can be used with the files property of the service config of the add_service command.

request

The request instruction executes either a POST or GET HTTP request, saving its result in a future references.

To make a GET or POST request, simply set the recipe field to use the specified GetHttpRequestRecipe or the PostHttpRequestRecipe.

http_response = plan.request(
# A service name designating a service that already exists inside the enclave
# If it does not, a validation error will be thrown
# MANDATORY
service_name = "my_service",

# The recipe that will determine the request to be performed.
# Valid values are of the following types: (GetHttpRequestRecipe, PostHttpRequestRecipe)
# MANDATORY
recipe = request_recipe,

# If the recipe returns a code that does not belong on this list, this instruction will fail.
# OPTIONAL (Defaults to [200, 201, ...])
acceptable_codes = [200, 500], # Here both 200 and 500 are valid codes that we want to accept and not fail the instruction

# If False, instruction will never fail based on code (acceptable_codes will be ignored).
# You can chain this call with assert to check codes after request is done.
# OPTIONAL (defaults to False)
skip_code_check = false,
)
plan.print(get_response["body"]) # Prints the body of the request
plan.print(get_response["code"]) # Prints the result code of the request (e.g. 200, 500)
plan.print(get_response["extract.extracted-field"]) # Prints the result of running ".name.id" query, that is saved with key "extracted-field"

The instruction returns a response, which is a dict with following key-value pair; the values are a future reference

  • response["code"] - returns the future reference to the status code of the response
  • response["body"] - returns the future reference to the body of the the response
  • response["extract.some-custom-field"] - it is an optional field and returns the future reference to the value extracted from body, which is explained below.

extract

jq's regular expressions is used to extract the information from the response body and is assigned to a custom field. The response["body"] must be a valid json object for manipulating data using extractions. A valid response["body"] can be used for extractions. See below for an example of how this can be done for the PostHttpRequestRecipe:

# Assuming response["body"] looks like {"result": {"foo": ["hello/world/welcome"]}}
post_request_recipe = PostHttpRequestRecipe(
...
extract = {
"second-element-from-list-head": '.result.foo | .[0] | split ("/") | .[1]',
},
)
post_response = plan.request(
service_name = "my_service",
recipe = post_request_recipe,
)
# response["extract.second-element-from-list-head"] is "world"
# response["body"] is {"result": {"foo": ["hello/world/welcome"]}}
# response["code"] is 200

NOTE: In the above example, response also has a custom field extract.second-element-from-list-head and the value is world which is extracted from the response[body].

These fields can be used in conjunction with assert and wait instructions, like so:

# Following the example above, response["extract.second-element-from-list-head"] is world
post_response = plan.request(
service_name = "my_service",
recipe = post_request_recipe,
)

# Assert if the extracted field in the response is world
plan.assert(response["extract.second-element-from-list-head"], "==", "world")

# Make a post request and check if the extracted field in the response is world
plan.wait(service_name="my_service", recipe=post_request_recipe, field="extract.second-element-from-list-head", assertion="==", target_value="world")

NOTE: jq returns a typed output that translates into the correspondent Starlark type. You can cast it using jq to match your desired output type:

# Assuming response["body"] looks like {"url": "posts/1"}}
post_request_recipe = PostHttpRequestRecipe(
...
extract = {
"post-number": '.url | split ("/") | .[1]',
"post-number-as-int": '.url | split ("/") | .[1] | tonumber',
},
)
response = plan.request(
service_name = "my_service",
recipe = post_request_recipe,
)
# response["extract.post-number"] is "1" (starlark.String)
# response["extract.post-number-as-int"] is 1 (starlark.Int)

For more details see jq's builtin operators and functions

set_connection

Kurtosis uses a default connection to configure networking for any created subnetwork. The set_connection can be used for two purposes:

  1. Used with the subnetworks argument, it will override the default connection between the two specified subnetworks.
set_connection(
# The subnetwork connection that will be be overridden
# OPTIONAL: See 2. below
subnetworks = ("subnetwork_1", "subnetwork_2"),

# The configuration for this connection. See the 'ConnectionConfig' section of 'Starlark Types' from the sidecar for more information.
# MANDATORY
config = connection_config,
)
  1. Used with only the config argument, it will update the default connection.
caution

Doing so will immediately affect all subnetwork connections that were not previously overridden.

set_connection(
# The configuration for this connection. See the 'ConnectionConfig' section of 'Starlark Types' from the sidecar for more information.
# MANDATORY
config = connection_config,
)

See ConnectionConfig for more information on the mandatory config argument.

info

Say we are overriding a connection between two subnetworks, as shown below:


connection_config = ConnectionConfig(
packet_delay_distribution = UniformPacketDelayDistribution(
ms = 500,
),
)

set_connection(
subnetworks = ("subnetworkA", "subnetworkB"),
config = connection_config,
)

If serviceA is in subnetworkA and serviceB is in subnetworkB, the effective latency for a TCP request between serviceA and serviceB will be 1000ms = 500ms x 2. This is because the latency is applied to both the request (serviceA -> serviceB) and the response (serviceB -> serviceA)

store_service_files

The store_service_files instruction copies files or directories from an existing service in the enclave into a files artifact. This is useful when work produced on one container is needed elsewhere.

artifact_name = plan.store_service_files(
# The service name of a preexisting service from which the file will be copied.
# MANDATORY
service_name = "example-service-name",

# The path on the service's container that will be copied into a files artifact.
# MANDATORY
src = "/tmp/foo",

# The name to give the files artifact that will be produced.
# If not specified, it will be auto-generated.
# OPTIONAL
name = "my-favorite-artifact-name",
)

The return value is a future reference to the name of the files artifact that was generated, which can be used with the files property of the service config of the add_service command.

update_service

The update_service instruction updates an existing service without restarting it. For now, only the service subnetwork can be updated live. In this case, the service will be moved to the corresponding subnetwork.

update_service(
# A Service name designating a service that already exists inside the enclave
# If it does not, a validation error will be thrown
# MANDATORY
name = "example-datastore-server-1",

# The changes to apply to this service. See the 'UpdateServiceConfig' section of 'Starlark Types' from the sidecar for more information.
# MANDATORY
config = update_service_config,
)

See UpdateServiceConfig for more information on the mandatory config argument.

upload_files

upload_files instruction packages the files specified by the locator into a files artifact that gets stored inside the enclave. This is particularly useful when a static file needs to be loaded to a service container.

artifact_name = plan.upload_files(
# The file to upload into a files artifact
# Must be a Kurtosis locator.
# MANDATORY
src = "github.com/foo/bar/static/example.txt",

# The name to give the files artifact that will be produced.
# If not specified, it will be auto-generated.
# OPTIONAL
name = "my-artifact",
)

The return value is a future reference to the name of the files artifact that was generated, which can be used with the files property of the service config of the add_service command.

wait

The wait instruction fails the Starlark script or package with an execution error if the provided assertion does not succeed within a given period of time. If the assertion succeeds, wait returns a future references with the result the last run of the assertion.

This instruction is best used for asserting the system has reached a desired state, e.g. in testing. To wait until a service is ready, you are better off using automatic port availability waiting via PortSpec.wait or ServiceConfig.ready_conditions, as these will short-circuit a parallel add_services call if they fail.

To learn more about the accepted recipe types, please see ExecRecipe, GetHttpRequestRecipe or PostHttpRequestRecipe.

# This fails in runtime if response["code"] != 200 for each request in a 5 minute time span
response = plan.wait(
# A Service name designating a service that already exists inside the enclave
# If it does not, a validation error will be thrown
# MANDATORY
service_name = "example-datastore-server-1",

# The recipe that will be run until assert passes.
# Valid values are of the following types: (ExecRecipe, GetHttpRequestRecipe, PostHttpRequestRecipe)
# MANDATORY
recipe = recipe,

# Wait will use the response's field to do the asssertions. To learn more about available fields,
# that can be used for assertions, please refer to exec and request instructions.
# MANDATORY
field = "code",

# The assertion is the comparison operation between value and target_value.
# Valid values are "==", "!=", ">=", "<=", ">", "<" or "IN" and "NOT_IN" (if target_value is list).
# MANDATORY
assertion = "==",

# The target value that value will be compared against.
# MANDATORY
target_value = 200,

# The interval value is the initial interval suggestion for the command to wait between calls
# It follows a exponential backoff process, where the i-th backoff interval is rand(0.5, 1.5)*interval*2^i
# Follows Go "time.Duration" format https://pkg.go.dev/time#ParseDuration
# OPTIONAL (Default: "1s")
interval = "1s",

# The timeout value is the maximum time that the command waits for the assertion to be true
# Follows Go "time.Duration" format https://pkg.go.dev/time#ParseDuration
# OPTIONAL (Default: "10s")
timeout = "5m",
)
# If this point of the code is reached, the assertion has passed therefore the print statement will print "200"
plan.print(response["code"])